Abstract

This study is mainly discusses about testing of two different computer units using a micro benchmark program to inspect their performance. Every unit was tested thrice to have better outlook of their execution. The behavior and specs of every unit is illustated in a table and graph.

Introduction

A microbenchmark is either a program or routine to calculate
and evaluate the performance of a particular part or task and is also used to evaluate basic and well-defined quantities
such as time taken, rate of operations, bandwidth, or latency.
Microbenchmarks are usually concerned with checking particular program subroutines or lower-level
hardware elements, such as the CPU, over a limited period of time as stated in Encyclopedia of Big Data Technologies.

According to Science Direct it says that Microbenchmarks may have a set of attributes that
are static and dynamic in a microbenchmark generation process.
Microbenchmarks that fulfill a series of static properties may be generated directly also because
static properties do not depend on the setting in which the microbenchmark is implemented.
This types of properties include dissemination of instructions, footprint of code and
data, distance of dependency, branch patterns, and patterns of access to the data.
In contrast, it is a complex task to
generate microbenchmarks with a given collection of dynamic properties.
The static microbenchmark properties as well as the design on which
the microbenchmark is run are specifically influenced by the dynamic properties.
Dynamic properties examples include per-cycle instructions,
memory hit/miss ratios, power, or temperature.

MICRO BENCHMARKING PROGRAM
[image: THE CODE USED]

[image: THE CODE USED 2]

This program is mainly used because oft its purpose to run a program, containing the constant size and dynamic size of the benchmark in a particular unit it is also called the Performance Iteration.

COMPUTER UNITS
Table 1
	
	ASUS
	Hi-Fi

	System Name
	LAPTOP-M7B7LCQ8
	USER-PC

	System Manufacturer
	ASUSTek COMPUTER INC.
	BIOSTAR Group

	System Model
	VivoBook 14_ASUS Laptop X407UAR
	Hi-Fi A70U3P

	System Type
	x64-based PC
	x64-based PC

	Processor
	Intel® Core(TM)i37020U CPU @ 2.30GHz
	AMD A-45300 APU 3,40 GHz

	RAM
	4.00 GB
	4.00 GB

	OS Name
	Windows 10 Home single Language
	Windows 7 Ultimate

The Computer Units used in this study is ASUS and Hi-Fi with the same level of RAM (4.00 GB) and System Type(x64) with different brand of processor namely Intel for ASUS and AMD for Hi-Fi also different Windows Edition, ASUS has the Windows 10 and the other one has Windows 7.

BENCHMARKING

Table 2. Performance Iteration of ASUS
	Test No.
	constantSize Benchmark
	dynamicSize Benchmark
	constantSize
Benchmark/
dynamicSize
Benchmark

	1
	824100
	891700
	1.0820288799902924

	2
	598300
	659900
	1.1029583820825672

	3
	293800
	299900
	1.207624234172907

Table 2.1 Performance Iteration of Hi-Fi
	Test No.
	constantSize Benchmark
	dynamicSize Benchmark
	constantSize
Benchmark/
DynamicSize
Benchmark

	1
	471311
	556702
	1.1811776088400228

	2
	464112
	523210
	1.1521607004439434

	3
	474932
	524115
	1.1035579830375717

As seen in the table above, the performance iteration from the two different computer units tested thrice. The PI (Performance Iteration) in ASUS it started from 1.08, then to 1.10 then lastly 1.20. On the other hand from Hi-Fi it started from 1.18 to 1.15l then lastly, 1.10.

The Performance Iteration of ASUS is better than the Hi-Fi for the reason that its constantSize Benchmark/ DynamicSize Benchmark of the model ASUS is lower than the Hi-Fi model. It is evident on the First to the Last trial of both computer units.

RESULTS AND DISCUSSION

The performance iteration has three type of results namely the ConstantSize Benchmark, DynamicSize Benchmark and

The ConstantSizeBenchmark(CSB) of the both units differ starting from ASUS, it began from a high amount of number then from trial two to three the amount started to shrink. In addition to this, The CSB of the Hi-Fi unit created only small amount of change.

The DynamicSize Benchmark of the model ASUS has the same performance in its CSB because the amount was descending and also in the model Hi-Fi, its performance created only a small dissimilarity on its number .

Lastly, the ConstantSize Benchmark/ DynamicSize Benchmark of ASUS model the number slightly moves from high then the number decrease then increases again, while in the Hi-Fi model, the numbers decreases from trial to trial.

TABLE 3

TABLE 3.1

CONCLUSION

[bookmark: _GoBack]The irrefutable fact that has been conclude in this study that between the two computer units, with the help of micro benchmark program assist us to visually distinguish that ASUS model does better performance than the other unit.

PERFORMANCE ITERATION
ConstantSb Of ASUS	Test 1	Test 2	Test 3	824100	598300	293800	DynamicSB of ASUS	Test 1	Test 2	Test 3	891700	659900	299900	ConstantSB of Hi-FI	Test 1	Test 2	Test 3	471311	464112	474932	DynamicSB of Hi-Fi	Test 1	Test 2	Test 3	556702	523210	524115	

PERFORMANCE ITERATION
CSB/DSB OF Hi-Fi	1.18117760884002	1.15216070044394	1.10355798303757	CSB/DSB OF ASUS	1.08202887999029	1.10295838208256	1.2076242341729	

image1.jpeg
7 Peromanteaton- Ntepad
Fle Eft Fomat View Hep
Hisport: java.util. AevayList;
inport Java.util. List;

public clas Perforsanlteration {
private static it theSun = &

public static void nain (String[] args) {
Systen.out.println(*Starting micro-benchaark test”);

11388 S0k elennts to the Arraist
List < Integer > nons = new Araylist ¢ Intege 5();
for (1t 1= & 1 ¢ 5000 i) {

ss.ad(1);

Systen.out.println("Haraing up ...");
Ivarm] wake sure a1l JET compiling s done before the actual benchnarking begins
for (int =0 1 ¢18; i) {

iteratebithConstantSize(ouss);

IteratelithDynanicSize(nuns);

Ilstart benchaarks

Systen.out.println("Starting the actual test”);

long constantSizeBenchnark = iteratelithConstantSize(nuns);
Long dynanicSizeBenchaark = iteratebithDynanicSize(nuss);
Systen.out.printIn("Test completed. .. printing results’);

Systen.out.printIn("constantSizeBenchuark : * + constantSizeBenchrk);
Systen.cut.println("dynanicSizeBenchaan : * + dynanicSizeBenchnank);
Systen.out. it "dynanicSizeBenchaarkconstantStzeBenchaark : * + ((double)ynanicSizeBenchaank(double) constantSizeBenchrk)

}

private static long iterateiithynanicSize(ListcInteger> nuns) {
int sun =
long start = Systen,nanoline();
for (int 1= 8 1 ¢ nuns.size(); 1#4) {
|/appear to do something useful

image2.jpeg
] pefomunterion - Neegad
Fe Bt Fomat Ven Hep
Systen.at,println“QyrancSizebenchark : + dnanicSizebnchank);
Syten.at.printn"tyrancSizeencharkconstntSizeenchar ™ + ((doule)dyanicSzebenchurdouble)constntSizeenchar));
}

private static long iteratelithOynanicSize(Listclntegery nuns) {
int sy
long start = Systen.nanoline();
for (it 4 = 1 ¢ nms.size); i)
Ilspear to 6o swething useful
sum += s, get(1);
}
Tong end = Systen.nanoTine();
setSun(sun);
retum end - start;

}

private static long iteratelithConstantSize(ListInteger) nuns) {

int cout = nums.size();

int sy

long start = Systen.nanoTine();

for (int 1= 0; 1 < couty) {
Ilapper to o sonething usefal
sun += runs. get({);

B

Log end = Systen.nncline);

setSun{sun);

retum e - start;

}

fimvoctions to this setodsiely evist o oo the W into
|[thinking the ve ae doing seething useal in the lonp

priate static wid seSa(it s {
ek = s

